Ensembles

This is the module for ensemble meta-algorithms which use ELM as base learners.

NELM as base learner

Bagging ELM

Bagging implementation for Neural Extreme Learning Machine.

class ensemble.BaggingNELM

Bases: algorithm.NELM

Bagging ensemble of Neural regularized Extreme Learning Machine

D = None

None

alpha = None

None

fit(trainData, trainTarg, parameters)
TrainData:Data matrix n x m, with n instances and m features.
TrainTarg:Target J-encoded matrix n x j.
Parameters:Structure with the cross validated hyperparameters.
get_indicator(testPatterns)
TestPattern:Data matrix n x m, with n instances to predict and m features.
k = None

None

trainTargDecoded = None

None

AdaBoost ELM

AdaBoost implementation for Neural Extreme Learning Machine.

class ensemble.AdaBoostNELM

Bases: algorithm.NELM

AdaBoost ensemble of Neural regularized Extreme Learning Machine

D = None

None

alpha = None

None

fit(trainData, trainTarg, parameters)
TrainData:Data matrix n x m, with n instances and m features.
TrainTarg:Target J-encoded matrix n x j.
Parameters:Structure with the cross validated hyperparameters.
get_indicator(testPatterns)
TestPattern:Data matrix n x m, with n instances to predict and m features.
trainTargDecoded = None

None

Boosting Ridge ELM

Boosting Ridge AdaBoost implementation for Neural Extreme Learning Machine.

class ensemble.BRNELM

Bases: algorithm.NELM

Boosting Ridge ensemble of Neural regularized Extreme Learning Machine

alpha = None

None

fit(trainData, trainTarg, parameters)
TrainData:Data matrix n x m, with n instances and m features.
TrainTarg:Target J-encoded matrix n x j.
Parameters:Structure with the cross validated hyperparameters.
fit_step(y_mu, s)

Same part

predict(testPatterns)
TestPattern:Data matrix n x m, with n instances to predict and m features.
y_mu = None

None

Negative Correlation ELM

Negative Correlation AdaBoost implementation for Neural Extreme Learning Machine.

class ensemble.AdaBoostNCNELM

Bases: ensemble.AdaBoostNELM

AdaBoost Negative Correlation ensemble of Neural regularized Extreme Learning Machine

fit(trainData, trainTarg, parameters)
TrainData:Data matrix n x m, with n instances and m features.
TrainTarg:Target J-encoded matrix n x j.
Parameters:Structure with the cross validated hyperparameters.
fit_step(weight, pen, trainTarg, eye_matrix, s)

Weight matrix

get_indicator(testPatterns)
TestPattern:Data matrix n x m, with n instances to predict and m features.